library(readr)
library(dplyr)
library(tidyr)
5 FreeSurfer Measures
5.1 Starting Project
This kit will use both shell
and R
5.1.1 Locate data
In the release folder, data are stored underneath the mris/derivatives
folder:
/corral-secure/projects/A2CPS/products/consortium-data/pre-surgery/mris/derivatives/freesurfer
This folder contains all of the FreeSurfer outputs for every participant (e.g., this is the directory that could correspond to the FreeSurfer environment variable $SUBJECTS_DIR
), which subject folders of the form sub-[recordid]_ses-[protocolid]
.
Most users will not need the raw FreeSurfer outputs and can instead rely on tables in which the morphological measures have been aggregated. There are three relevant tables
- aparc.tsv has the outputs of
aparcstats2table
(this is measurements derived from parcellations of the cortical surface, like cortical thickness) - aseg.tsv has the outputs of
asegstats2table
(that is, measurements derived from segmentations of the 3d structural image, like regional gray matter volumes) - headers.tsv has some other information about the brain as a whole (e.g., estimated Total Intracranial Volume)
For each of these, there are data dictionaries that details the contents (e.g., aparc.json
explains the columns of aparc.tsv
).
$ ls /corral-secure/projects/A2CPS/products/consortium-data/pre-surgery/mris/derivatives/freesurfer/*{json,tsv}
/corral-secure/projects/A2CPS/products/consortium-data/pre-surgery/mris/derivatives/freesurfer/aparc.json /corral-secure/projects/A2CPS/products/consortium-data/pre-surgery/mris/derivatives/freesurfer/gm_morph.tsv
/corral-secure/projects/A2CPS/products/consortium-data/pre-surgery/mris/derivatives/freesurfer/aparc.tsv /corral-secure/projects/A2CPS/products/consortium-data/pre-surgery/mris/derivatives/freesurfer/headers.json
/corral-secure/projects/A2CPS/products/consortium-data/pre-surgery/mris/derivatives/freesurfer/aseg.json /corral-secure/projects/A2CPS/products/consortium-data/pre-surgery/mris/derivatives/freesurfer/headers.tsv
/corral-secure/projects/A2CPS/products/consortium-data/pre-surgery/mris/derivatives/freesurfer/aseg.tsv
5.1.2 Extract data
In this kit, we will consider the cortical surface measurements, stored within aparc.tsv
. This table contains nine regional measurements for the various structures that compose each of six parcellations.
<- read_tsv("data/aparc.tsv", show_col_types = FALSE)
aparc head(aparc)
StructName | NumVert | SurfArea | GrayVol | ThickAvg | ThickStd | MeanCurv | GausCurv | FoldInd | CurvInd | sub | ses | hemisphere | parc |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
bankssts | 1360 | 909 | 2055 | 2.516 | 0.397 | 0.112 | 0.020 | 10 | 1.1 | 10706 | V1 | lh | aparc |
caudalanteriorcingulate | 852 | 604 | 1626 | 2.253 | 0.887 | 0.131 | 0.024 | 13 | 1.0 | 10706 | V1 | lh | aparc |
caudalmiddlefrontal | 2870 | 1857 | 4018 | 2.164 | 0.485 | 0.104 | 0.018 | 22 | 2.2 | 10706 | V1 | lh | aparc |
cuneus | 1595 | 1090 | 2019 | 1.738 | 0.515 | 0.141 | 0.027 | 19 | 2.0 | 10706 | V1 | lh | aparc |
entorhinal | 480 | 306 | 1366 | 3.029 | 0.816 | 0.105 | 0.018 | 4 | 0.3 | 10706 | V1 | lh | aparc |
fusiform | 3434 | 2414 | 8326 | 2.907 | 0.603 | 0.123 | 0.023 | 38 | 3.4 | 10706 | V1 | lh | aparc |
A typical analysis will only rely on one parcellation. For details of the different parcellations, see the FreeSurfer documentation. Two good starting choices are either the aparc
or aparc.a2009s
atlas.
<- aparc |>
a2009s filter(parc == "aparc.a2009s")
head(a2009s)
StructName | NumVert | SurfArea | GrayVol | ThickAvg | ThickStd | MeanCurv | GausCurv | FoldInd | CurvInd | sub | ses | hemisphere | parc |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G_and_S_frontomargin | 828 | 603 | 1341 | 2.098 | 0.476 | 0.131 | 0.026 | 10 | 0.9 | 10706 | V1 | lh | aparc.a2009s |
G_and_S_occipital_inf | 1116 | 762 | 2218 | 2.474 | 0.643 | 0.127 | 0.025 | 11 | 1.1 | 10706 | V1 | lh | aparc.a2009s |
G_and_S_paracentral | 1548 | 858 | 1810 | 1.886 | 0.580 | 0.097 | 0.019 | 10 | 1.5 | 10706 | V1 | lh | aparc.a2009s |
G_and_S_subcentral | 1151 | 809 | 2142 | 2.443 | 0.413 | 0.129 | 0.021 | 13 | 1.0 | 10706 | V1 | lh | aparc.a2009s |
G_and_S_transv_frontopol | 531 | 480 | 1424 | 2.378 | 0.585 | 0.203 | 0.052 | 11 | 1.3 | 10706 | V1 | lh | aparc.a2009s |
G_and_S_cingul-Ant | 2005 | 1481 | 3804 | 2.463 | 0.531 | 0.140 | 0.028 | 31 | 2.5 | 10706 | V1 | lh | aparc.a2009s |
Some analyses may benefit from having the data in a “wider” format, which can be achieved with tools from the Tidyverse. For example, here is how we could pivot the table such that one column represents the participant and the others give the average cortical thickness for each region.
<- a2009s |>
a2009s_wider select(StructName, ThickAvg, sub, hemisphere) |>
pivot_wider(names_from = c(StructName, hemisphere), values_from = ThickAvg)
head(a2009s_wider)
sub | G_and_S_frontomargin_lh | G_and_S_occipital_inf_lh | G_and_S_paracentral_lh | G_and_S_subcentral_lh | G_and_S_transv_frontopol_lh | G_and_S_cingul-Ant_lh | G_and_S_cingul-Mid-Ant_lh | G_and_S_cingul-Mid-Post_lh | G_cingul-Post-dorsal_lh | G_cingul-Post-ventral_lh | G_cuneus_lh | G_front_inf-Opercular_lh | G_front_inf-Orbital_lh | G_front_inf-Triangul_lh | G_front_middle_lh | G_front_sup_lh | G_Ins_lg_and_S_cent_ins_lh | G_insular_short_lh | G_occipital_middle_lh | G_occipital_sup_lh | G_oc-temp_lat-fusifor_lh | G_oc-temp_med-Lingual_lh | G_oc-temp_med-Parahip_lh | G_orbital_lh | G_pariet_inf-Angular_lh | G_pariet_inf-Supramar_lh | G_parietal_sup_lh | G_postcentral_lh | G_precentral_lh | G_precuneus_lh | G_rectus_lh | G_subcallosal_lh | G_temp_sup-G_T_transv_lh | G_temp_sup-Lateral_lh | G_temp_sup-Plan_polar_lh | G_temp_sup-Plan_tempo_lh | G_temporal_inf_lh | G_temporal_middle_lh | Lat_Fis-ant-Horizont_lh | Lat_Fis-ant-Vertical_lh | Lat_Fis-post_lh | Pole_occipital_lh | Pole_temporal_lh | S_calcarine_lh | S_central_lh | S_cingul-Marginalis_lh | S_circular_insula_ant_lh | S_circular_insula_inf_lh | S_circular_insula_sup_lh | S_collat_transv_ant_lh | S_collat_transv_post_lh | S_front_inf_lh | S_front_middle_lh | S_front_sup_lh | S_interm_prim-Jensen_lh | S_intrapariet_and_P_trans_lh | S_oc_middle_and_Lunatus_lh | S_oc_sup_and_transversal_lh | S_occipital_ant_lh | S_oc-temp_lat_lh | S_oc-temp_med_and_Lingual_lh | S_orbital_lateral_lh | S_orbital_med-olfact_lh | S_orbital-H_Shaped_lh | S_parieto_occipital_lh | S_pericallosal_lh | S_postcentral_lh | S_precentral-inf-part_lh | S_precentral-sup-part_lh | S_suborbital_lh | S_subparietal_lh | S_temporal_inf_lh | S_temporal_sup_lh | S_temporal_transverse_lh | G_and_S_frontomargin_rh | G_and_S_occipital_inf_rh | G_and_S_paracentral_rh | G_and_S_subcentral_rh | G_and_S_transv_frontopol_rh | G_and_S_cingul-Ant_rh | G_and_S_cingul-Mid-Ant_rh | G_and_S_cingul-Mid-Post_rh | G_cingul-Post-dorsal_rh | G_cingul-Post-ventral_rh | G_cuneus_rh | G_front_inf-Opercular_rh | G_front_inf-Orbital_rh | G_front_inf-Triangul_rh | G_front_middle_rh | G_front_sup_rh | G_Ins_lg_and_S_cent_ins_rh | G_insular_short_rh | G_occipital_middle_rh | G_occipital_sup_rh | G_oc-temp_lat-fusifor_rh | G_oc-temp_med-Lingual_rh | G_oc-temp_med-Parahip_rh | G_orbital_rh | G_pariet_inf-Angular_rh | G_pariet_inf-Supramar_rh | G_parietal_sup_rh | G_postcentral_rh | G_precentral_rh | G_precuneus_rh | G_rectus_rh | G_subcallosal_rh | G_temp_sup-G_T_transv_rh | G_temp_sup-Lateral_rh | G_temp_sup-Plan_polar_rh | G_temp_sup-Plan_tempo_rh | G_temporal_inf_rh | G_temporal_middle_rh | Lat_Fis-ant-Horizont_rh | Lat_Fis-ant-Vertical_rh | Lat_Fis-post_rh | Pole_occipital_rh | Pole_temporal_rh | S_calcarine_rh | S_central_rh | S_cingul-Marginalis_rh | S_circular_insula_ant_rh | S_circular_insula_inf_rh | S_circular_insula_sup_rh | S_collat_transv_ant_rh | S_collat_transv_post_rh | S_front_inf_rh | S_front_middle_rh | S_front_sup_rh | S_interm_prim-Jensen_rh | S_intrapariet_and_P_trans_rh | S_oc_middle_and_Lunatus_rh | S_oc_sup_and_transversal_rh | S_occipital_ant_rh | S_oc-temp_lat_rh | S_oc-temp_med_and_Lingual_rh | S_orbital_lateral_rh | S_orbital_med-olfact_rh | S_orbital-H_Shaped_rh | S_parieto_occipital_rh | S_pericallosal_rh | S_postcentral_rh | S_precentral-inf-part_rh | S_precentral-sup-part_rh | S_suborbital_rh | S_subparietal_rh | S_temporal_inf_rh | S_temporal_sup_rh | S_temporal_transverse_rh |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10706 | 2.098 | 2.474 | 1.886 | 2.443 | 2.378 | 2.463 | 2.445 | 2.534 | 2.532 | 2.524 | 1.669 | 2.481 | 2.420 | 2.099 | 2.239 | 2.400 | 2.852 | 3.408 | 2.156 | 2.121 | 2.971 | 1.903 | 2.697 | 2.380 | 2.142 | 2.550 | 1.817 | 1.848 | 2.371 | 2.196 | 2.159 | 2.267 | 2.179 | 2.897 | 3.292 | 2.471 | 2.957 | 2.683 | 1.688 | 1.982 | 2.160 | 1.851 | 3.500 | 1.601 | 1.646 | 1.756 | 2.585 | 2.545 | 2.344 | 2.892 | 1.939 | 2.058 | 1.990 | 2.073 | 1.959 | 1.878 | 1.843 | 1.698 | 2.021 | 2.702 | 2.294 | 1.998 | 2.186 | 2.444 | 1.947 | 1.429 | 2.086 | 2.166 | 2.099 | 2.098 | 2.134 | 2.398 | 2.359 | 2.337 | 2.316 | 2.112 | 1.715 | 2.466 | 2.542 | 2.462 | 2.429 | 2.348 | 2.722 | 2.145 | 1.736 | 2.361 | 2.381 | 2.222 | 2.153 | 2.392 | 3.494 | 3.292 | 2.324 | 1.759 | 2.829 | 1.966 | 2.858 | 2.613 | 2.285 | 2.430 | 1.827 | 1.740 | 2.227 | 2.035 | 2.136 | 2.505 | 2.048 | 2.859 | 3.178 | 2.231 | 2.638 | 2.809 | 1.878 | 1.938 | 2.346 | 1.942 | 3.461 | 1.479 | 1.630 | 1.940 | 2.644 | 2.709 | 2.369 | 3.315 | 2.103 | 1.880 | 2.097 | 1.956 | 2.364 | 1.841 | 1.870 | 1.840 | 2.208 | 2.126 | 2.256 | 1.793 | 2.458 | 2.636 | 1.884 | 1.368 | 1.765 | 2.217 | 2.097 | 2.145 | 2.283 | 2.536 | 2.348 | 2.297 |
10734 | 2.463 | 2.110 | 1.959 | 2.483 | 2.443 | 2.410 | 2.357 | 2.361 | 2.668 | 2.103 | 1.682 | 2.520 | 2.550 | 2.414 | 2.465 | 2.584 | 2.835 | 3.001 | 2.161 | 1.906 | 2.592 | 1.842 | 2.948 | 2.572 | 2.414 | 2.490 | 2.136 | 1.759 | 2.500 | 2.349 | 2.404 | 2.320 | 2.206 | 3.044 | 2.830 | 2.496 | 2.826 | 2.822 | 1.729 | 2.251 | 1.919 | 1.465 | 3.147 | 1.613 | 1.852 | 1.763 | 2.738 | 2.267 | 2.180 | 2.375 | 1.613 | 2.051 | 2.241 | 2.340 | 2.009 | 2.000 | 1.728 | 1.929 | 2.082 | 2.343 | 2.115 | 2.010 | 2.056 | 2.486 | 1.776 | 1.347 | 1.924 | 2.212 | 2.279 | 1.969 | 2.202 | 2.313 | 2.303 | 2.139 | 2.454 | 2.216 | 1.800 | 2.267 | 2.364 | 2.467 | 2.474 | 2.410 | 2.478 | 2.323 | 1.529 | 2.683 | 2.504 | 2.533 | 2.519 | 2.564 | 3.210 | 2.871 | 2.352 | 1.914 | 2.609 | 1.929 | 2.998 | 2.643 | 2.418 | 2.433 | 2.043 | 1.747 | 2.488 | 2.344 | 2.473 | 2.573 | 2.227 | 2.935 | 3.035 | 2.297 | 2.780 | 2.682 | 1.869 | 2.250 | 2.056 | 1.671 | 3.071 | 1.598 | 1.712 | 1.949 | 2.421 | 2.002 | 2.365 | 2.199 | 1.703 | 2.178 | 2.260 | 2.338 | 2.129 | 1.847 | 1.721 | 1.839 | 1.903 | 2.125 | 2.029 | 2.123 | 2.222 | 2.488 | 1.924 | 1.454 | 1.783 | 2.243 | 2.223 | 1.669 | 2.321 | 2.283 | 2.206 | 1.777 |
20371 | 2.498 | 2.080 | 2.218 | 2.804 | 2.722 | 2.690 | 2.394 | 2.328 | 2.520 | 2.367 | 1.757 | 2.570 | 2.602 | 2.463 | 2.496 | 2.611 | 3.370 | 3.746 | 2.028 | 1.820 | 2.795 | 1.917 | 2.864 | 2.680 | 2.608 | 2.666 | 2.199 | 1.985 | 2.593 | 2.470 | 2.379 | 2.572 | 2.651 | 3.030 | 3.124 | 2.709 | 2.750 | 3.101 | 1.714 | 2.197 | 2.380 | 1.694 | 3.276 | 1.723 | 1.885 | 2.165 | 2.564 | 2.951 | 2.371 | 2.657 | 2.008 | 2.022 | 2.088 | 2.183 | 2.705 | 2.094 | 1.664 | 1.848 | 2.032 | 2.591 | 2.380 | 2.208 | 2.165 | 2.689 | 2.165 | 1.553 | 2.117 | 2.262 | 2.161 | 2.611 | 2.225 | 2.652 | 2.461 | 2.404 | 2.405 | 2.615 | 2.079 | 2.522 | 2.431 | 2.537 | 2.252 | 2.325 | 2.645 | 2.415 | 1.583 | 2.650 | 2.496 | 2.285 | 2.403 | 2.605 | 3.346 | 3.601 | 2.128 | 1.915 | 2.648 | 1.912 | 2.948 | 2.548 | 2.671 | 2.509 | 2.293 | 1.955 | 2.397 | 2.416 | 2.668 | 2.713 | 2.523 | 2.940 | 3.145 | 2.521 | 2.736 | 2.956 | 2.127 | 2.363 | 2.290 | 1.621 | 3.067 | 1.695 | 1.788 | 2.314 | 2.900 | 2.658 | 2.485 | 2.501 | 1.979 | 2.128 | 2.161 | 2.139 | 2.051 | 2.150 | 1.652 | 2.002 | 2.242 | 2.441 | 2.276 | 2.087 | 2.212 | 2.540 | 2.155 | 1.335 | 2.132 | 2.353 | 2.179 | 2.147 | 2.135 | 2.507 | 2.489 | 2.502 |
20108 | 2.037 | 2.204 | 2.025 | 2.509 | 2.350 | 2.638 | 2.351 | 2.386 | 2.592 | 2.042 | 1.607 | 2.625 | 2.721 | 2.549 | 2.454 | 2.704 | 3.342 | 3.520 | 1.904 | 1.731 | 2.637 | 1.804 | 2.815 | 2.535 | 2.381 | 2.566 | 1.986 | 1.738 | 2.509 | 2.374 | 2.408 | 2.677 | 2.555 | 2.787 | 2.887 | 2.453 | 2.550 | 2.433 | 1.999 | 2.000 | 2.549 | 1.767 | 3.484 | 1.893 | 1.873 | 2.146 | 2.863 | 2.445 | 2.332 | 2.570 | 2.145 | 2.216 | 2.242 | 2.414 | 1.928 | 2.063 | 1.641 | 2.268 | 2.104 | 2.524 | 2.089 | 2.003 | 1.947 | 2.569 | 1.977 | 1.539 | 2.015 | 2.376 | 2.340 | 2.829 | 2.352 | 2.260 | 2.291 | 1.988 | 2.100 | 1.873 | 2.009 | 2.578 | 2.419 | 2.631 | 2.449 | 2.452 | 2.666 | 2.108 | 1.584 | 2.702 | 2.392 | 2.554 | 2.449 | 2.644 | 3.491 | 3.654 | 1.678 | 1.540 | 2.863 | 1.947 | 3.140 | 2.701 | 1.812 | 2.475 | 1.737 | 1.845 | 2.602 | 2.420 | 2.782 | 2.690 | 2.868 | 3.179 | 3.027 | 2.526 | 2.646 | 2.685 | 2.182 | 2.197 | 2.270 | 1.517 | 3.187 | 1.835 | 1.958 | 2.314 | 2.580 | 2.332 | 2.350 | 2.952 | 2.236 | 2.142 | 2.097 | 2.243 | 2.177 | 1.915 | 2.010 | 2.018 | 2.018 | 2.454 | 2.156 | 1.851 | 2.276 | 2.679 | 2.045 | 1.294 | 2.016 | 2.156 | 2.104 | 2.174 | 2.294 | 2.295 | 2.384 | 2.609 |
10689 | 2.345 | 2.583 | 2.608 | 2.687 | 2.610 | 2.623 | 2.684 | 2.545 | 2.691 | 2.234 | 1.962 | 2.591 | 2.724 | 2.583 | 2.717 | 2.899 | 3.240 | 3.609 | 2.442 | 1.845 | 2.933 | 1.905 | 3.182 | 2.940 | 2.673 | 2.870 | 2.453 | 2.343 | 2.955 | 2.615 | 2.394 | 2.531 | 2.287 | 3.181 | 3.027 | 2.703 | 3.118 | 3.226 | 2.061 | 2.427 | 2.344 | 1.840 | 3.380 | 1.668 | 2.004 | 2.186 | 2.830 | 2.620 | 2.625 | 2.468 | 2.123 | 2.352 | 2.258 | 2.474 | 2.269 | 2.283 | 1.823 | 2.255 | 2.312 | 2.395 | 2.624 | 2.292 | 2.224 | 2.531 | 2.327 | 1.340 | 2.321 | 2.452 | 2.378 | 2.271 | 2.500 | 2.506 | 2.473 | 2.629 | 2.515 | 2.916 | 2.410 | 2.480 | 2.688 | 2.589 | 2.584 | 2.578 | 2.885 | 2.423 | 1.789 | 2.744 | 2.604 | 2.590 | 2.674 | 2.959 | 3.512 | 3.546 | 2.732 | 2.115 | 2.735 | 2.166 | 3.210 | 2.994 | 2.656 | 2.857 | 2.509 | 2.286 | 2.874 | 2.617 | 2.564 | 2.791 | 2.548 | 3.309 | 3.292 | 2.520 | 2.986 | 3.309 | 2.311 | 2.370 | 2.452 | 1.833 | 3.422 | 1.892 | 2.015 | 2.269 | 2.597 | 2.487 | 2.745 | 2.415 | 2.194 | 2.247 | 2.414 | 2.610 | 2.199 | 2.221 | 2.089 | 2.210 | 2.323 | 2.408 | 2.473 | 2.211 | 2.229 | 2.627 | 2.333 | 1.701 | 2.173 | 2.507 | 2.394 | 2.447 | 2.542 | 2.513 | 2.538 | 2.878 |
20020 | 2.174 | 1.939 | 2.221 | 2.647 | 2.285 | 2.480 | 2.376 | 2.230 | 2.691 | 2.316 | 1.839 | 2.571 | 2.639 | 2.492 | 2.392 | 2.645 | 3.024 | 3.446 | 2.271 | 1.817 | 2.633 | 1.922 | 3.039 | 2.719 | 2.542 | 2.691 | 2.331 | 2.113 | 2.698 | 2.556 | 2.578 | 2.367 | 2.335 | 2.973 | 3.308 | 2.368 | 2.857 | 3.071 | 2.407 | 2.082 | 2.283 | 1.696 | 3.297 | 1.697 | 1.898 | 1.951 | 2.458 | 2.292 | 2.405 | 2.883 | 1.624 | 2.066 | 1.927 | 2.245 | 2.308 | 2.022 | 1.779 | 1.844 | 2.055 | 2.198 | 2.288 | 1.773 | 2.102 | 2.493 | 1.997 | 1.399 | 2.134 | 2.143 | 2.195 | 2.036 | 2.128 | 2.405 | 2.392 | 1.951 | 2.379 | 2.182 | 2.360 | 2.670 | 2.211 | 2.445 | 2.185 | 2.361 | 2.840 | 2.615 | 1.834 | 2.545 | 2.475 | 2.005 | 2.511 | 2.608 | 3.096 | 3.468 | 2.531 | 2.030 | 2.639 | 1.907 | 2.977 | 2.760 | 2.483 | 2.579 | 2.241 | 2.107 | 2.909 | 2.398 | 2.629 | 2.576 | 2.572 | 3.021 | 3.178 | 2.420 | 2.895 | 2.973 | 2.195 | 2.464 | 2.276 | 1.748 | 3.388 | 1.782 | 1.826 | 2.057 | 2.591 | 2.321 | 2.555 | 2.626 | 1.659 | 2.128 | 1.991 | 2.214 | 2.098 | 1.940 | 1.970 | 1.942 | 2.161 | 2.534 | 2.189 | 1.899 | 2.434 | 2.581 | 1.897 | 1.570 | 1.994 | 2.275 | 2.271 | 1.827 | 2.143 | 2.310 | 2.375 | 2.440 |
5.2 Considerations While Working on the Project
5.2.1 Variability Across Scanners
Many MRI biomarkers exhibit variability across the scanners, which may confound some analyses. For an up-to-date assessment of the issue and overview of current thinking, please see Confluence.
5.2.2 Data Quality
As with any MRI derivative, all pipeline derivatives have been included. This means that products were included regardless of their quality, and so some products may have been generated from images that are known to have poor quality—rated “red”, or incomparable. For details on the ratings and how to exclude them, see Appendix A. Additionally, extensive QC has not yet been performed on the derivatives themselves, and so there may be cases where pipelines produced atypical outputs. For an overview of planned checks, see Confluence.
Currently, no QC has been performed on the underlying segmentations and parcellations. With adequate sample sizes, results based on whole-atlas FreeSurfer measurements are generally robust, although there are individual regions that may warrant close inspection (e.g., McCarthy et al. 2015, Vahermaa et al. 2023). Moreover, it remains unclear the extent to which FreeSurfer’s accuracy persists over the wide range of demographics found in the A2CPS dataset. The Imaging DIRC is actively exploring these aspects of quality.
5.2.3 Methods
FreeSurfer outputs were generated by the fMRIPrep pipeline. The fMRIPrep pipeline is similar to a typical call to FreeSurfer’s recon-all
, with a majority of changes aiming to parallelize more parts of recon-all
. However, there are differences, such as in how the brain is masked. The A2CPS use of fMRIPrep is even more different because it entails replacing the fMRIPrep masking procedure with SynthStrip
. In general, these changes are expected to only improve the quality of the FreeSurfer outputs. However, they may hinder some comparisons between results derived from A2CPS and those in other studies.
5.2.4 Citations
The FreeSurfer package has been developed through extensive research. If you use these derivatives in your analyses, please follow the documentation for citing FreeSurfer: https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitation.
In publications or presentations including data from A2CPS, please include the following statement as attribution:
Data were provided [in part] by the A2CPS Consortium funded by the National Institutes of Health (NIH) Common Fund, which is managed by the Office of the Director (OD)/ Office of Strategic Coordination (OSC). Consortium components and their associated funding sources include Clinical Coordinating Center (U24NS112873), Data Integration and Resource Center (U54DA049110), Omics Data Generation Centers (U54DA049116, U54DA049115, U54DA049113), Multi-site Clinical Center 1 (MCC1) (UM1NS112874), and Multi-site Clinical Center 2 (MCC2) (UM1NS118922).